United States Patent

US009400647B2

(12) 10) Patent No.: US 9,400,647 B2
Gonsalves 45) Date of Patent: Jul. 26, 2016
(54) APPLICATION DISCOVERY AND 8,666,951 B2 3/2014 Hanis et al.
INTEGRATION USING SEMANTIC 8,707,261 B2 4/2014 Heller et al.
8,806,424 Bl 82014 Rayetal.
METAMODELS 2002/0038335 Al* 3/2002 Dongetal.cccooeeene. 709/203
. . 2004/0078777 Al* 4/2004 Bahrami 717/105
(71) Applicant: Michael Gonsalves, Stoughton, MA 2004/0250238 Al 12/2004 Singh et al.
(as) 2005/0138173 Al 6/2005 Haet al.
2007/0094256 Al 4/2007 Hite et al.
(72) Inventor: Michael Gonsalves, Stoughton, MA 2010/0250559 Al 9/2010 Glaenzer et al.
US) 2011/0179397 Al 7/2011 Pfeifer et al.
(2011/0283269 Al 11/2011 Gass etal.
. 2012/0096429 Al* 4/2012 Desaietal. ... 717/107
(73) Assignee: SAP SE, Walldorf (DE) 2012/0143867 Al 6/2012 Royetal.
2014/0282404 Al 9/2014 Gonsalves
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 330 days.
EP 2779582 A2 9/2014
(22) Filed: Mar. 15, 2013 Extended European Search Report received for European Patent
. L. Application No. 14159522.3, mailed on Aug. 28, 2014, 6 pages.
(65) Prior Publication Data Burmester et al., “Tool Integration At the Meta-Model Level: The
Fujaba Approach”, International Journal on Software Tools for Tech-
US 2014/0282404 Al Sep. 18,2014 nology Transfer, Nov. 11, 2004, pp. 203-218.
(51) Imt.ClL % .
GOGF 9/44 (2006.01) cited by examiner
gzﬁyzj//ooos (388881) Primary Examiner — Hang Pan
(0D) (74) Attorney, Agent, or Firm — Brake Hughes Bellermann
(52) US.CL LLP
CPC .. GOG6F 8/70 (2013.01); GO6F 8/36 (2013.01);
HO4L 67/16 (2013.01); HO4W 4/001 (2013.01); (57) ABSTRACT
GO6F 8/10(2013.01) . .
(58) Field of Classification Search A metamodel selector may determine a semantic metamodel
USPC 717/120 for at least two software applications, the semantic meta-
See ap phcatlonﬁleforcompletesearchhlst oty model including a description of semantics, processes, and
’ data that are applicable to the at least two software applica-
(56) References Cited tions. A metadata manager may determine application meta-

U.S. PATENT DOCUMENTS

8,005,879 B2 8/2011 Bornhoevd et al.
8,370,863 B2 2/2013 Grigoriev et al.
8,468,491 B2 6/2013 Markovic
8,631,046 B2 1/2014 B’Far et al.
8,645,276 B2 2/2014 Wong et al.
8,650,043 Bl 2/2014 Phillips

Application-specific

data describing an application of the at least two applications.
A transformation engine may transform the application meta-
data into an application-specific metamodel instance of the
semantic metamodel, and an integration engine may integrate
the at least two software applications, based on the applica-
tion-specific metamodel instance.

17 Claims, 11 Drawing Sheets

Metamodel and modl repository
18

Semantic meta
model(s)
102

metamode! instance
|

metamodsl instance

Application 108
“Application-speciic
10

132 1328

Afleastone Atleast one
computing device | processor

Computer-readable
storage medium
1328

Application 104

Metadata
2

Transformation Engine 120

= Semantic mapper
Metadata 122

114

Process mapper
124
Wietarmodel
selector Data mepper
118 126

Semantic -
metamode! Application
118 matcher
128

Integration
engine

U.S. Patent Jul. 26, 2016 Sheet 1 of 11 US 9,400,647 B2

100
—__ —
Metamodel and model repository
115
Semantic meta
model(s)
L o 102
Application-specific
metamodel instance [————— r
106 Application 108
A Application-specific
metamodel instance
110
L o
~— ﬁ/
At least one At least one Computer-readable
computing device processor storage medium
132 132A 1328
<

Application 104

Metadata

112 Transformation Engine 120

Semantic mapper
Metadata 122

114

Process mapper

124
Metamodel
selector Data mapper
116 126
Semantic o .
metamodel Application Integration
118 matcher engine
I 128 130

FIG. 1

U.S. Patent Jul. 26, 2016 Sheet 2 of 11 US 9,400,647 B2

Meta model and
model repository

104 Requisition application 104 Sourcing application

202 Application features 206 Application features

204 Bill of Needs

FIG. 2A

208

104 Requisition - 108 Sourcing

application application

FIG. 2B

U.S. Patent Jul. 26, 2016 Sheet 3 of 11 US 9,400,647 B2

o
(]
o

Determine a semantic metamodel for at least two software

applications, the semantic metamodel including a description [™~_ 302

of semantics, processes, and data that are applicable to the at
least two software applications

l

Determine application metadata describing an application of
the at least two applications [~ 304

Transform the application metadata into an application-specific [~_ 306
meta model instance of the semantic meta model

Integrate the at least two software applications, based on the
application specific metamodel instance [308

FIG. 3

U.S. Patent Jul. 26, 2016 Sheet 4 of 11 US 9,400,647 B2

404
[] attributes /
Guid
406
Globally unique application
identifier
Company
408

The company responsible for
the application

"""" il
A0
Application URL to the responsible
402 d]i company
This is the metamodel for a SemanticlD
business application and its 412

usage semantics

Features
214

The set of requirements filled

by the application and
exposed for external use

Needs
416

The set of requirements that
this applications needs to be
filled by some other
application or service

FIG. 4

U.S. Patent Jul. 26, 2016 Sheet 5 of 11 US 9,400,647 B2

=1 attributes |

Guid 406

Globally unique application identifier

| Company 408 I™N_ 404
The company responsible for the

application
Url 410
URL to the responsible company /

Semantic ID

I

Uniquely indentifies the semantic usage

A human-readable description 512 514
of the usage. This is included in 510
generated documentation

402
[SemanticlDd
Application =

This is the
metamodel Analytics
for a business || Purpose —
application 508
and its usage ~ ExtendedPurpose
semantics 508 518
Requirement
{ usage ; ~_-524
521 Defined usage semantics

414
==

Integration

Features G—{== &

The set of requirements
filled by the application and
exposed for external use

416

The set of requirements
that this applications needs
to be filled by some other
application of service

FIG. 5

{processtiste™\5%
The set of processes for ™\ _ 532

the containing requirement

52
50

The set of services for the
defined requirement

Requirement

usage 534
Defined usage semantics

The set of processes for
the containing requirement

53
540

The set of services for the
defined requirement

9

_ 532

U.S. Patent

Jul. 26, 2016 Sheet 6 of 11

= _afiributes |

Guid 406

Company 408

402

[Applcationt:
This is the
metamodel
for a
business
application
and its usage
semantics

US 9,400,647 B2

Purpose
508

508

Uniquely indentifies the semantic usage

412 Description
A human-readable description of the
- usage. This is included in generated
ﬁSemantlch = '@3_ documentation

506

510

Globally unique application identifier
I™~— 404
The company responsible for the application
4 502
sible company /
Semantic ID
504

512 514

Integration

ProcessStep
Analytics

518

414

[Features (=== Requirement_l__};‘l—
The set of requirements
filled by the application and

exposed for external use

Defined usage 526
semantics

The set of processes
for the containing

604

The set of valid
relations and
associations

532 U
531

416 /
i—-«_Needs B—(==)= ’Requwement[a—

The set of requirements
that this applications needs
to be filled by some other
application of service

requirement 606
DatalList 528
The set of data for the defined
requirement
ServicelList 530
The set of services for the defined
requirement
610

Requirement 608
534

Defined usage 536
semantics

The set of processes
for the containing
requirement

DatalList

The set of data for the defined

requirement

ServicelList

The set of services for the defined

requirement

SemanticlD

dentifies semantic
usage

Direction

Identifies the direction of
flow

Relationships

The set of valid
relations and
associations

612
538

540

FIG. 6

US 9,400,647 B2

Sheet 7 of 11

Jul. 26, 2016

U.S. Patent

924

S9OIAI9S PaUYAP [BNIOE BU) 0} 80UIDI
S0IAIBS PB)E|SS JUBLIND B} SSIBI0SSY

$80IAISS Pajeal JO 18I

3§ Eled pejelsy

s ¢
sseooud pauysp [BnjOE 8Y) 0} 80UBIS)BI 8Lz akL
ssaooud palelad Jualind gU] saleldossy wwmmwoo._ﬂ —Uwum_m‘_ »—O uw_l_ i QON
$S90014pale|ay
o= ;
Lz L oLz sdiysuone|sy
WL
0. 90/
0L
20L ™ uonoaliqg
abesn
onuewss Jo ssodind ooads
9z¢ -uoljeo)dde ue sajuapl siyL abesn onuewss sy}
8¢S JO uoneJePsp s|gepes)

~ ®sodingpspusix3

0cs
uonesldde
SS8UISNY ||e 10} pi[eA aJe Jey)

oAUy [2p0dind pauljep-aid 0138 Byl
F(E-)3 ssodindpiepue
dejgsseoold (&) dpiepuels

uonelbeyu)

ves pzg 905 uonduoseqg 4

\

Buuojuoly

-BUIYSEBLW B} S SIYL

\ uonjejuswWnoop pajelousb

oLs Ul papnjoul si siy| -abesn ay) é

10 uonduosap s|gepesl-Uewiny

abesn onuewas sy} saliuapul Alenbiun

Qi onuewss

MOJ} JO UonoBIP
Bul selluep|

—

J lohuewss

L Old

suopeosse
pue sdiysuone|al
pileA Jo1es ayL

l
D diysuonejey

SOIUEWDS
abesn paulyeq

- 5ben]

104

US 9,400,647 B2

Sheet 8 of 11

Jul. 26, 2016

U.S. Patent

8oIAIBS B
1O soluewss pue uoljuyeqd

sz~ a|
vg~___ewen|—
soljuewss abesn pauyeq

8

44
doINaS B
JO soljuewss pue uonuag

®0_>._ww..
[e]X¢] fagin e T |

ne~__ af-
218~ o}

sonuewes abesn psulje(

801

8 Old

snejg -iz] -eee |

808

suonoe ssasold s|qe|iese
10 188 8y} sajelawinug

JsiuonoY

ajokoa)| ssacold sy
ur saseyd ay) sajelawinug

Jsisnje)s

908

sonuewss abesn pauljeq

¥08

$S900.d ssauIsng e
10 sonuewss pue uoniuleq

[-] $8320.d

c08

US 9,400,647 B2

Sheet 9 of 11

Jul. 26, 2016

U.S. Patent

0€6~

cc6

/

pspusix3

piepuelS

4

026

anjepjusjUODUBWS|Fe)e(

826~ adA [jusjuoDiusws|geleq

926~ swepNjuswsa|geleq

¥e6~d gnusws|geleq

uoIsuUa)Xa Ue Jo pal}
piepuess e si pial e ji Sauiuap]

.mm\uu._m_r._ adA [Jusws|gereq

I

816

6 Old

109[qo ssaulsng e ulyIm pjay
[enplAlpul Ue sjuasaiday

|_Mﬂ.unu| Jusws|3ejeq

[epouw
elep s3oslqo sssuisng e Jo
sp|al} Jo 198 aU) sjuasalday

JsIuonoy

14

916

26~ ejequoneinbyuon

14%°)

ejep oy} Ag pejussalidal
s1jeyj Joslgo sssuisng
Jo adA} 8y} sayuep

0L6~- ejeqgeuonoesuel]

eleqJsisely

806

[-] adA]eleq

906

sonuewss abesn pauya(g

¥06

sso004d ssauisng e
10 sojuewWaSSs pue uopiuyeq

(=) —& e

206

US 9,400,647 B2

Sheet 10 of 11

Jul. 26, 2016

U.S. Patent

Ol OlId

82I1AJIBS 8U} Jo} siejpweled
indjno pue ndui ssulyap
Jey} swayos sy} 01 TdN

8101 ™ qyneweyogedinies

74N odpus 8218

9L0L JdMuiodpuz

80IAI8S B 8LINSU0D pue
0] J08UUOD 0} MOY Salusp|

. 20BlI8)U[80IAIBS

clol TAX

4

14%0)

8oIAIeS B
10 sonuewss pue uoniusQd

80IAIBS ﬂa [-] eleq

8y JoJ adA) [eoluyos) sy |
200!l

0L0L ™ dvOS

1S3d

8001

- m\nul_m__u_mﬁ; | 92IM9G
4
9001

sonuewss sbesn paullag

00l

U.S. Patent

Jul. 26, 2016

Sheet 11 of 11

US 9,400,647 B2

1102~

<<Application>> <<Semantic|D>> P:;gﬂl;%oze»ay
SAP sourcing & CLM Semantic ID Process sPep

Guid = sap.sourcing
Company = SAP

ID = Strategic Saurcing
Description = Execute Strategic

Strategic Sourcing

Url = htttp://www.ondemand.com/sourcin Sourcing

1108 A L
1}12 Need Features 1104 1106
1113 110 1148 1149
<<Requirement>> <<Requirement>> — /
Purchase RFP
<<Usage>> requisition <<Usage>> 1153
i i 1120 Direction:Input 1151 1152 ~
Direction:Input 1116/~ 1118 / <<SemanticlD>> - <<Purpose>>
<<SemanticlD>>_ <<Purpose>> _ Semantic |dentification — Request for proposal
Semantic Identification Demand Aggregation ID-RFP REP
TD-purchase requisition Description-RFP creation and
Description-purchase Demand management
requisition Relationships 1154
Relationships 1 122/"1 124 <<SemanticiD>>
T —— Contract-MGMT [™-1156
RelatedProcess B]H Strategic-sourcing <<SemanticiD>>
] i Auction-MGMT 1157
RelatedService §| Create-RFP / 11/58 <<SemanticiD>> 1150
- = 1 Create-Contract
RelatedData E| / «SenéaFnédD» M <<SemanticlD>>
- x i ; i Create-auction [>-1160
<<Requrementos 1130 11g4 1126 P “<Semanteld> L1162
Contract
23.’]51 371 136 <<Seman.licID>>
) Auction ™N-1163
<<Requirement>> (
<<Usage>> Purchase order | 1165— 1168— 1177~
1140 1166 b <<L(st?ge§> <<ﬁatus>> §<%erv_i'(::eB>_(>j
H et emand-to-Source ew ubmit Bi
Dlrectlon.output 1138 ,—1139 / 1164 e — / —
somenteTaumpaaion | | Purchato Brder Suppier Bsoovery J| B || siar Ructor
Process <<Usage>> <<Slatus>> \ \1 171
Doatinenase et | [order ppp Source-to-award Award_|\4469
U
e o;f_er A 173 Award-to-tontract | L'I 172
elationships
- - Servi <<Usagge>> <<Usagge>> ~ 1175
RelatedProcess] <<5661raggt;ID>> ervice E“_:J RFP Creation H Creation-RFP |‘\. 1177
1 176/ | <<Service>> |_
) <<SemanticlD>> 1174 Create RFP 1178
RelatedService $:| Create-PO | |
f S iclD f 1179
RelatedData] /« empa?)t'c - / ,-1/180
1 <<Usage>> <<SemanticlD>>
{ T { Data
\ 4 e 1145 1147 quag (o8 E]——:I T H TR e
<<Requirement>> 1181 <<Data>> <<Element>> | :
— RFx Proposal due Date [~ 1184
1183 DataType— <<Element>>
TransactionalData Intent to Respond [~~~ 1185
FIG 1 1 1197(B 1186
sagge
. 1187~ Vendor Hpper —1188
<<Data>> <<Element>>
T89~4 Vendor Duns Number [™1190
DataType=Master < <<Element>>
Data Small Business [7-1191

US 9,400,647 B2

1
APPLICATION DISCOVERY AND
INTEGRATION USING SEMANTIC
METAMODELS

TECHNICAL FIELD

This description relates to integration of software applica-
tions.

BACKGROUND

Software applications, such as business applications, are
often composed of multiple applications and related services,
all working together. In some situations, application users
may adopt a standard set of such applications and related
services from a single supplier, in an attempt to ensure that the
various components will work well together. However, in
many scenarios, the best solutions to meet specific user needs
are often made up of heterogeneous technologies in a hybrid
landscape, combining best-in-class applications. Moreover,
even in cases in which all components are obtained from a
single supplier, there is no guarantee that the components will
fit perfectly together. Consequently, integration of multiple
software applications is often required, and typically repre-
sents a time-consuming, manually intensive, error prone,
expensive, and generally inefficient process for obtaining the
desired result.

SUMMARY

According to one general aspect, a system may include
recorded on a non-transitory computer readable storage
medium and executable by at least one processor. The system
may include a metamodel selector configured to cause the at
least one processor to determine a semantic metamodel for at
least two software applications, the semantic metamodel
including a description of semantics, processes, and data that
are applicable to the at least two software applications. The
system may include a metadata manager configured to cause
the at least one processor to determine application metadata
describing an application of the at least two applications. The
system may include a transformation engine configured to
cause the at least one processor to transform the application
metadata into an application-specific metamodel instance of
the semantic metamodel. The system may include an integra-
tion engine configured to cause the at least one processor to
integrate the at least two software applications, based on the
application-specific metamodel instance.

According to another general aspect, a computer-imple-
mented method for causing at least one processor to execute
instructions recorded on a computer-readable storage
medium may include determining a semantic metamodel for
at least two software applications, the semantic metamodel
including a description of semantics, processes, and data that
are applicable to the at least two software applications. The
method may include determining application metadata
describing an application of the at least two applications,
transforming the application metadata into an application-
specific metamodel instance of the semantic metamodel, and
integrating the at least two software applications, based on the
application-specific metamodel instance.

A computer program product may be tangibly embodied
on a non-transitory computer-readable medium and may
comprise instructions that, when executed, are configured to
cause at least one processor to determine a semantic meta-
model for at least two software applications, the semantic
metamodel including a description of semantics, processes,

10

25

30

40

45

55

2

and data that are applicable to the at least two software appli-
cations. The instructions, when executed, may be further
configured to determine application metadata describing an
application of the at least two applications, transform the
application metadata into an application-specific metamodel
instance of the semantic metamodel, and integrate the at least
two software applications, based on the application-specific
metamodel instance.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system for application
discovery and integration using a semantic metamodel.

FIG. 2A is a block diagram of a discovery process of the
system of FIG. 1.

FIG. 2B is a block diagram of an integration process of the
system of FIG. 1.

FIG. 3 is a flowchart illustrating example operations of the
system of FIG. 1.

FIG. 4 is a diagram of an example semantic metamodel
used in the system of FIG. 1.

FIG. 5 is amore detailed example of the metamodel of FIG.
4.

FIG. 6 is a more detailed example of the metamodel of FIG.
5.

FIG. 7 is a more detailed example of usage semantics
included in the metamodels of FIGS. 5 and 6.

FIG. 8 is a more detailed example of a process list used in
the metamodels of FIGS. 5 and 6.

FIG. 9 is a more detailed example of a data list used in the
metamodels of FIGS. 5 and 6.

FIG. 10 is a more detailed example of a service list used in
the example metamodels of FIGS. 5 and 6.

FIG. 11 is a diagram of an example of an application-
specific metamodel instance created using the metamodels of
FIGS. 4-10 in the system of FIG. 1.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of a system 100 for application
discovery and integration using semantic metamodels. In the
example of FIG. 1, one or more semantic metamodels 102
may beutilized by an application 104 to create an application-
specific metamodel instance 106 therefrom. Thereafter, the
application 104 may be integrated for use with a second
application 108, which itself may be associated with a corre-
sponding application-specific metamodel instance 110. In
other words, by creating the application-specific metamodel
instances 106, 108 from the same, common underlying
semantic metamodel 102, the applications 104, 108 may be
easily integrated with one another, with little or no human
involvement in the integration process, and in a manner that is
generally more convenient, fast, cost effective, and efficient
than existing integration techniques.

Thus, in the system 100, one or more of the semantic
metamodels 102 provide the application 104 with an ability to
describe itself in a generic, common, high level language,
where the resulting description is represented in FIG. 1 as the
application-specific metamodel instance 106. In other words,
rather than focusing on specific details of an individual inte-
gration between two specified applications, and explicitly
mapping semantics and data from one such application to the
other, the semantic metamodel 102 enables the application

US 9,400,647 B2

3

104 to generate its self-describing application-specific meta-
model instance 106, independently of any specific integration
with any other software application. For example, as
described in more detail below, it may occur that the applica-
tion 108 may not even exist at a time that the application-
specific metamodel instance 106 is created.

Nonetheless, once the application 108 is created, discov-
ered, or otherwise identified or determined for integration
with the application 104, the semantic metamodels 102 (i.e.,
an appropriate semantic metamodel selected therefrom, as
described below) provide for a generic, high level language
for describing systems, data structures, and functionalities of
each of'the applications 104, 108, without affecting the under-
lying, actual low level implementations of these things in
each application 104, 108, which may themselves therefore
continue to function in system-specific, e.g., proprietary,
ways.

In the example of FIG. 1, the application 104, and the
application 108, should be understood to conceptually repre-
sent virtually any software application. As such, either or both
of'the applications 104, 108 should be understood to execute,
e.g., locally, orin a secure environment behind a firewall, over
a public network, or in any other suitable execution environ-
ment. In many of the examples that follow, the applications
104, 108 are described as business applications, such as may
be operated by a company, enterprise, or other business entity.
However, again, it may be appreciated that such examples are
non-limiting, and that the applications 104, 108 also may
represent many other types of software applications, such as,
e.g., educational applications, government applications,
charitable or other non-profit applications, or applications
designed for personal use by a user.

Whatever a nature of type of the application 104, FIG. 1
illustrates that a metadata manager 112 may be utilized to
manage associated application metadata 114 which describes
aspects, features, and functions of the application 104. For
example, the metadata 114 may describe a type and location
of associated data, e.g., master data or configuration data,
used by the application 104. The metadata 114 also may
describe various processes executed by the application 104,
e.g., processes for manipulating the above-referenced data
and/or external data. In some cases, the metadata 114 may
relate such processes to relevant use cases and descriptions
thereof. For example, in the case of business applications, the
metadata 114 may describe the application 104 in the context
of various, relevant business processes and associated use
cases.

In some cases, the metadata 114 may simply be provided in
conjunction with the application, e.g., by a creator or pub-
lisher thereof, in which case the metadata manager 112 may
be responsible simply for storing/accessing the metadata 114.
In other scenarios, the metadata manager 112 may be respon-
sible for generating the metadata 114 automatically, e.g.,
based on an analysis of underlying application code of the
application 104. In still other examples, the metadata man-
ager 112 may be configured to interact with a user of the
application 104 to create the metadata 114, even long after an
original creation or publication of the application 104.

As referenced above, it may occur that one or more seman-
tic metamodels 102 are available for use with or by the appli-
cation 104. Accordingly, the application 104 is illustrated as
including a metamodel selector 116, which may be config-
ured to select a particular semantic metamodel 118 from the
one or more semantic metamodels 102 for creation of the
application-specific metamodel instance 106. Consequently,
as described in more detail below, it may be appreciated that
the application 108 should be understood to utilize some or all

10

15

20

25

30

35

40

45

50

55

60

65

4

of the same semantic metamodel 118 in creating its associ-
ated, application-specific metamodel instance 110.

Thus, in some examples, it may occur that, of the available
semantic metamodels 102, only one (i.e., the semantic meta-
model 118) is available or compatible for use with the appli-
cation 104. In other scenarios, it may occur that two or more
of'the semantic metamodels 102 could be used with the appli-
cation 104, but that the application 104 may choose from
among the available subset of the semantic metamodels 102,
based on a desired nature and type of integration (e.g., based
on a type of integration and associated semantic metamodel
relevant to a type or class of application, or to the application
108 itself, if known at the time).

In practice, the metamodel selector 116 may operate by
selecting or otherwise identifying one or more features or use
cases contained within the metadata 114, for comparison
thereof against the semantic metamodels 102. For example,
such features may be pre-determined by the user of the appli-
cation 104, or may be dynamically selected by the metamodel
selector 116, based, e.g., on other aspects of the application
104. Then, by comparing the thus-identified features of the
application 104 from the metadata 114 to corresponding
aspects of the semantic metamodels 102, the metamodel
selector 116 may identify the semantic metamodel 118 to be
used in obtaining the application-specific metamodel
instance 106.

Inthe example of FIG. 1, the semantic metamodels 102 are
illustrated as being stored within a metamodel and model
repository 115. As described in detail below, the repository
115 provides a central, available, searchable location, which
thus facilitates, e.g., operations of the metamodel selector 116
in selecting the semantic metamodel 118. For example, in
scenarios in which the system 100 is implemented in the
context of a specific business or other enterprise, the reposi-
tory 115 may be implemented within an associated on-pre-
mises [T environment. In other example implementations,
however, as described in detail below, the repository 115 may
be implemented in Cloud-based scenarios, in which the
repository 115 is publicly available to all users of the appli-
cation 104.

In specific examples, the semantic metamodels 102,
including the semantic metamodel 118, may be implemented
as XML (extensible markup language) schemas. In general,
as is known, such a schema describes allowable structures and
contents of XML documents that are compatible therewith.
Accordingly, a transformation engine 120 may be configured
to utilize the semantic metamodel 118 together with the meta-
data 114, to thereby provide the application-specific meta-
model instance 106 as an XML document. As such, and in
example implementations, the application-specific meta-
model instance 106, as well as the application-specific meta-
model instance 110, may be created, stored, and utilized using
well-known techniques for searching for and manipulating
XML documents. Nonetheless, it may appreciated that vari-
ous other types of current or future schemas may be utilized to
implement the semantic metamodels 102.

In the example of FIG. 1, the transformation engine 120
executes several different types of mappings in order to
instantiate the semantic metamodel 118 using the metadata
114, to thereby obtain the application-specific metamodel
instance 106. For example, the transformation engine 120 is
illustrated as including a semantic mapper 122, which may be
operable to transform individual or combinations of terms
and/or concepts within the metadata 114 into corresponding
terms/concepts, using language consistent with the semantic
metamodel 118.

US 9,400,647 B2

5

Detailed examples of such semantic mappings are pro-
vided in detail below, but, for the sake of illustration, it may
occur that the application 104 is a business application related
to obtaining a request for proposal (RFP), which uses the term
“winning bid” obtained from a “vendor.” At the same time,
the semantic metamodel 118 may include a portion that
relates to such RFPs, in which the semantic mapper 122
determines that a “supplier” is equivalent to a “vendor,” and a
“winning bid” contains final price information for a “line
item” of an “outline agreement™ defined in the semantic meta-
model 118. As may be appreciated with respect to the simpli-
fied example, the application 108 may utilize a term such as
“seller” or “provider,” yet the application-specific metamodel
instance 110 associated therewith may similarly refer to such
entities as “supplier,” thereby providing the above-referenced
common framework for referring to a given concept during a
subsequent integration of the applications 104, 108.

Somewhat similarly, a process mapper 124 may map pro-
cesses described in the metadata 114 to processes specified
within the semantic metamodel 118. In this regard, it may be
appreciated that a single process of the metadata 114 may
correspond to two or more processes of the semantic meta-
model 118, or, conversely, multiple processes of the metadata
114 may refer to a single process of the semantic metamodel
118. In still other example scenarios, a given number of a
plurality of processes of the metadata 114 may correspond to
a same or different number of processes specified in the
context of the semantic metamodel 118. For example, it may
occur that the metadata 114 describes a series of process
steps, but that the semantic metamodel 118 only needs to
specify a first and last step of the series of process steps in
order to facilitate desired integrations of the application 104
with other applications, such as the application 108. For
example, in a pricing process, the metadata 114 may specify
various rounds of negotiations (e.g., auctions) for lowering an
initially offered price. Meanwhile, the semantic metamodel
118 may only require the fact that a price was requested and
ultimately obtained for purposes of specifying the applica-
tion-specific metamodel instance 106.

Finally with respect to the transformation engine 120 of the
example of FI1G. 1, the data mapper 126 may be configured to
relate data types and specific data instances of the metadata
114 to the semantic metamodel 118. For example, as refer-
enced above, the data mapper 126 may seek to relate master
data or configuration data of the application 104 to corre-
sponding types of data within the semantic metamodel 118.

The data mapper 126 may also be responsible for mapping
individual data fields of data of the application 104 to corre-
sponding data fields within the application-specific meta-
model instance 106. In this regard, it may be appreciated that,
although examples of mapping data from one field to another
are, by themselves, well known, the data mapper 126 of FIG.
1 provides for specific functionalities which enable these and
other types of data mapping in the context of the semantic
metamodel 118, to thereby facilitate a desired integration of
the application 104 in a manner that is partially or completely
automated, and therefore generally more efficient and cost
effective than existing techniques which require varying
extents of manual identification of data fields to be mapped.

As referenced above, the repository 115 may serve as a
central point of discovery, identification, and selection of one
or more of the semantic metamodels 102 by the metamodel
selector 116. Similarly, an application matcher 128 may be
utilized to discover, select, and utilize the application 108,
and/or other applications, for integration with the application
104. In other words, the repository 115 may be used to reg-
ister a plurality of applications, such as the application 108,

20

25

40

45

6

providing various features and functions which may be desir-
able to use in conjunction with operations of the application
104. In practice, all such applications may be stored or refer-
enced in conjunction with corresponding application-specific
metamodel instances, so that, upon discovery/identification
and selection thereof, any such application may be immedi-
ately available for integration with the application 104, uti-
lizing the various techniques described above, and in con-
junction with operations of an integration engine 130,
described in more detail below.

For example, in a highly simplified example, it may occur
that a user of the application 104 has specific knowledge of
the individual application 108, and may desire integration of
the application 104 therewith. In such scenarios, the user of
the application 104 may utilize the application matcher 128
simply to identify the application 108 within a repository 115,
perhaps simply by identifying the application 108 using an
appropriate unique identifier or name. Thereafter, integration
of'the applications 104, 108 may proceed as described herein.

In other example implementations, however, the user of the
application 104 may not have such specific knowledge.
Rather, the user may simply have an idea of a desired (type of)
functionality to be implemented by, or in conjunction with,
operations of the application 104. In such cases, the applica-
tion matcher 128 may be utilized to perform a search of
applications stored in association with the repository 115, in
order to match available applications and their associated
functionalities with the desired functionalities to be included
in an integration with the application 104.

For example, the application matcher 128 may be config-
ured to search the applications of the repository 115 based on
their corresponding names or other descriptions or metadata
associated therewith, in order to ascertain a likelihood of
desired functionality being provided thereby. Further, the
application matcher 128 may restrict such searches to those
applications which are associated with application-specific
metamodel instances derived from the same semantic meta-
model 118 utilized by the application 104 to generate the
application-specific metamodel instance 106, in order to
ensure compatibility between applications identified by the
application matcher 128 and the application 104.

In more specific example implementations, the applica-
tion-specific metamodel instance 106 may be provided with
what is referred to herein as a bill of needs, which is designed
to specify one or more functionalities that may be associated
with the application 104, i.e., that may be provided one of the
applications 108 for access thereto by integration of the appli-
cation with the application 104.

As referenced above, and described in more detail below,
the application-specific metamodel instance 106 may include
various requirements of the application 104, as translated
from the metadata 114 by the transformation engine 120,
which specify functionalities and points of integration.
Therefore, similarly, and as also explained in detail below, the
bill of needs may be expressed using the same or substantially
the same techniques as used in expressing such application
features. In other words, the application features specify what
the application 104 does, while the bill of needs specifies
what the application 104 would like to have done by another
application, which would presumably express its abilities in
this regard in the context of its own application features
included within its own application-specific metamodel
instance.

Thus, the application matcher 128 may proceed by match-
ing some or all of a bill of needs of the application-specific
metamodel instance 106 with matching application features
of the application-specific metamodel instance 110, and

US 9,400,647 B2

7

thereafter executing integration of the applications 104, 108
using the relevant portions of the application features and bill
of needs of the application-specific metamodel instance 106
on the one hand, and the application features of the applica-
tion-specific metamodel instance 110 on the other hand.

By way of more specific examples, with reference to FIG.
2A, adiscovery process that may be executed by the applica-
tion matcher 128 is illustrated, in which the application 104 is
illustrated as a requisition application which accesses the
metamodel and model repository 115 to discover the appli-
cation 108 as a sourcing application for integration therewith.
In the example, as referenced above, the application-specific
metamodel instance 106 may include both application fea-
tures 202 and bill of needs 204 associated with the requisition
application 104.

As described, the format and structure of the application
features 202 and 204 may be identical or substantially iden-
tical, although the application features 202 specify capabili-
ties and characteristics of the requisition application 104,
while the bill of needs 204 express one or more desired
capabilities and characteristics which are sought in the con-
text of a sourcing application, such as the sourcing applica-
tion 108. Meanwhile, the sourcing application 108 is illus-
trated as being associated with application features 206 of its
own application-specific metamodel instance 110. As may be
appreciated, the application features 206 may include a for-
mat and structure that matches both the application features
202 and bill of needs 204 of the application-specific meta-
model instance 106, all of which are in accordance with the
common semantic metamode] 118.

By way of specific, non-limiting example, it may occur that
the requisition application 104 corresponds to a Cloud-based
human resources system, which may wish to make use of a
Cloud survey tool to support employee performance reviews.
Meanwhile, the sourcing application 108 may represent one
of perhaps a plurality of such survey tools. In operation, an
owner or other provider of the survey tool 108 may wish to
make such a survey tool publicly available for use in conjunc-
tion with the repository 115. In this regard, such a provider
may publish or otherwise register the survey tool 108 in the
repository 115. For example, rather than storing the survey
tool 108 itself in conjunction with the repository 115, the
provider may simply register a reference to the survey tool
108, in conjunction with registration of the corresponding
application-specific metamodel instance 110, which itself
may be made available for search and discovery within the
repository 115.

It may be further appreciated that the applications 104, 108
may be developed completely independently of one another,
and at different times. For example, the requisition applica-
tion 104, e.g., the human resources application referenced
above, may be developed before the sourcing application,
e.g., the survey tool 108, even exists. Nonetheless, a devel-
oper or other provider of the human resources application 104
may recognize a potential need for such a survey tool, and
may provide specifics of such a need within the bill of needs
204.

Thus, at some later time, an administrator or other user of
the human resources application 104 may in fact wish to
utilize the functionality of such a survey tool, and may be
provided with an administrative dashboard or other user inter-
face in the context of the human resources application 104, in
which each general feature specified by the bill of needs 204,
including the referenced survey tool, may be paired with a list
of available services of the repository 115 and may be used to
support the specified feature.

40

45

8

Then, the administrator may simply need to select a sub-
scribe button or other appropriate interface element in order
to initiate integration of the applications 104, 108 and thereby
activate the desired functionality. Thereafter, for example,
new buttons (or other Ul artifacts) may be provided or
enabled within the human resources application 104, in order
to provide for launching an operation of the survey tool 108.
In this way, the administrator of the human resources appli-
cation 104 may identify and select the survey tool 108 as
providing desired functionality, even if the survey tool 108
did not exist, and/or was developed wholly independently of,
the human resources application 104. Moreover, it may be
appreciated that the administrator may similarly update the
desired survey functionality, using a different survey tool than
the survey tool 108, if desired and if/when such a preferred
survey tool becomes available within the repository 115.

FIG. 2B illustrates an integration of the requisition appli-
cation 104 and the sourcing application 108, as conceptually
illustrated by arrow 208. For example, the integration engine
130 of FIG. 1 may be utilized to leverage the application-
specific metamodel instances 106, 110, in order to automati-
cally integrate the applications 104, 108 at a suitable or
desired manner.

For example, the integration engine 130 may implement a
mediated integration, in which the integration engine 130 or
other suitable component serves as a central point of interac-
tion between inputs and outputs of the applications 104, 108.
In other example implementations, the integration 208 may
be direct, so that the outputs of each application 104, 108 are
suitably provided as direct inputs to the other of the applica-
tions 104, 108 as inputs thereof. In these and other examples,
it may be appreciated that the various inputs/outputs of the
applications 104, 108 are commonly specified and described
through the use of the corresponding application-specific
metamodel instances 106, 110.

With reference back to FIG. 1, application 104 is illustrated
as being executed using at least one computing device 132,
which itself includes at least one processor 132A and com-
puter readable storage medium 132B. That is, for example,
instructions for execution of the application 104 may be
stored using the computer readable storage medium 132B,
and may be executed by the at least one processor 132A in
order to obtain various features and functions described
herein.

For example, the at least one processor 132A may repre-
sent multiple processors executed in parallel. Meanwhile, the
computer readable storage medium 132B may be utilized to
store data of the application 104, such as master data or
configuration data, or the metadata 114, as well as the actual
instructions for execution of the application 104. Of course,
the at least once computing device 132 may include, or be
associated with, various peripheral components (e.g., human
interface devices for displays), various power components,
and various network or other communication interfaces, none
of' which are specifically illustrated in the example of FIG. 1,
for the sake of simplicity and clarity.

Similarly, the at least one computing device 132 is repre-
sented generically in FIG. 1 for the sake of simplicity, but may
beunderstood to represent any appropriate computing device,
such as, e.g., a desktop computer, a computer of a computing
cluster, or any appropriate mobile computing device (e.g., a
laptop, notebook, netbook, tablet, or Smartphone). Further, in
as much as the at least one computing device 132 may repre-
sent two or more computing devices in communication with
one another, it may be appreciated that some or all of the
functionalities described with respect to the application 104
may be implemented on a first such computing device, while

US 9,400,647 B2

9

remaining operations may be executed on the one or more
computing devices and communications therewith.

For example, in particular, it may be appreciated that any of
the various components 112-130 illustrated as executing in
conjunction with the application 104 may be, in fact, executed
separately from the application 104, e.g., using a separate
computing device and/or a separate application or other hard-
ware/software platform. In particular, for example, it may
occur that the metamodel selector 116, the transformation
engine 120, the application matcher 128 and/or the integra-
tion engine 130 may individually or collectively be executed
outside of, and in communication with, the application 104.
For example, these components may be operated as a middle-
ware between the application 104 and the repository 115.
Similarly, it may occur that these components are provided in
conjunction with the repository 115 itself, using an appropri-
ate Cloud-based hardware/software platform. Similarly, the
metadata manager 112 may also be implemented separately
from the application 104, such as in scenarios in which the
application 104 is not initially provided with appropriate
metadata 114.

Thus, from the above description, it should be apparent
that, in various example scenarios, the application 104 may
simply be an otherwise-conventional application, which may
be registered with the repository 115 by an owner or other
provider thereof. Thereafter, a provider of the repository 115
may utilize the various components 112-130 to generate the
application-specific metamodel instance 106 for association
with the application 104 within the repository 115, to thereby
make the application 104 publicly available for integration
with other applications utilizing the same semantic meta-
model (e.g., 118) of the semantic metamodels 102. Such
examples may be suitable for scenarios in which providers of
the application 104 are unwilling or unable to generate the
corresponding application-specific metamodel instance 106.

In other example scenarios, however, it may occur that the
semantic metamodels 102, including the semantic meta-
model 118, represent a known standard for commonly
expressing features and needs of applications. In such sce-
narios, providers of such applications as the application 104
may desire to obtain the benefits of such a standard represen-
tation, and may adopt use of a corresponding, appropriate
semantic metamodel in order to generate the application-
specific metamodel instance 106 for registration in conjunc-
tion with the application 104 within the repository 115. Of
course, similar comments and scenarios may apply to the
application 108 and its corresponding application-specific
metamodel instance 110, and to all such applications and
associated metamodel instances registered in the context of
the repository 115.

Thus, an aggregate and over time, the repository 115 may
come to represent a large store of available applications which
may be easily, e.g., automatically, integrated with one another
in desired fashions, to thereby provide developers and other
application users with desired functionalities in a cost-effec-
tive and efficient manner. Moreover, such advantages may be
obtained even though the various application-specific meta-
model instances are developed independently, in conjunction
with their underlying applications, and without requiring
knowledge of, or even existence of, the other applications
which may be integrated therewith at some future point in
time. Thus, the developers and other users of the various
applications may each be provided with a large number and
variety of potentially desirable applications and associated
features, as well as with the ability to utilize such applications
and associated features in a convenient manner.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 3 is a flowchart 300 illustrating example operations of
the system 100 of FIG. 1. In the example of FIG. 3, operations
302-308 are illustrated as separate, sequential operations.
However, it may be appreciated that, in various implementa-
tions, any two or more of the operations 302-308 may be
implemented in a partially or completely overlapping or par-
allel manner, or in a nested, iterative, or looped fashion.
Further, additional or alternative operations may be included,
and, in various implementations, one or more of the opera-
tions 302-308 may be omitted.

In the example of FIG. 3, a semantic metamodel may be
determined for at least two software applications, the seman-
tic metamodel including a description of semantics, pro-
cesses, and data that are applicable to the at least two software
applications (302). For example, the metamodel selector 116
of FIG. 1 may select the semantic metamodel 118 from the
available semantic metamodels 102 of the metamodel and
model repository 115. In some examples, only a single
semantic metamodel may be applicable or compatible with a
given software application, such as the application 104, so
that metamodel selection per se need not be performed in
every scenario. Further, as referenced above, it is not neces-
sary to know of an existence, much less a particular identity,
of both of the at least two software applications in order to
utilize the selected semantic model with respect to a software
application. Rather, the operation 302 merely requires that the
referenced semantic metamodel provides the referenced
description in a manner that is applicable to the at least two
software applications, and, as described in detail herein, pro-
vides each of the at least two software applications with an
ability to describe itself for current or future integration with
the other application.

Application metadata describing an application of the at
least two applications may be determined (304). For example,
the metadata manager 112 of FIG. 1 may determine the meta-
data 114 of the application 104. As described, the metadata
114 may be currently available and stored in association with
the application 104, and/or may be partially or completely
generated for the application 104 by the metadata manager
112. As described, the metadata 114 may generally describe
various features, aspects, or requirements of the application
104, in a manner that is generally application or assistant-
specific, so that such applications may be provided with cor-
responding metadata in a manner that is suitable for (e.g.,
proprietary to) the given application and/or underlying plat-
form.

The application metadata may be transformed into an
application-specific metamodel instance of the semantic
metamodel (306). For example, the transformation engine
120 may transform the metadata 114, using the semantic
metamodel 118, to obtain the application-specific metamodel
instance 106. In this way, the application in question, e.g., the
application 104, may describe itself for current or future
integrations.

Thus, the at least two software applications may be inte-
grated, based on the application-specific metamodel instance
(308). For example, the integration engine 130 may be con-
figured to utilize integration points (e.g., input/output inter-
faces) identified by the application-specific metamodel
instance 106 with respect to the application 104, in order to
integrate the application 104 with the application 108.

Thus, FIG. 3 may be understood to represent a high-level
operational flow of example, basic operations of the system
100 of FIG. 1. As referenced above with respect to FIG. 3,
various additional or alternative operations may be included,
many of which may be understood or appreciated from the
above description of FIGS. 1, 2A, 2B.

US 9,400,647 B2

11

For example, although not specifically recited in FIG. 3,
the second of the at least two software applications may
generally also be associated with a corresponding applica-
tion-specific metamodel instance (e.g., the application-spe-
cific metamodel instance 110 associated with the application
108), so that the integration engine 130 may utilize both such
instances to implement the integration of the applications
104, 108.

Similarly, FIG. 3 does not explicitly mention the use of the
bill of needs referenced above, e.g., with respect to FIG. 2A,
and associated matchings thereof between the bill of needs
204 of the requisition application 104 and corresponding
application features 206 of the sourcing application 108.
Nonetheless, again, it may be appreciated that any and all
such additional or alternative operations may be included in
an appropriate or desired manner in the context of the overall
operational flow of the flowchart 300 of FIG. 3. Many such
additional or alternative features and associated operations
are described below with respect to the specific examples of
FIGS. 4-11.

FIG. 4 is a diagram 400 of a metamodel to be utilized in
conjunction with a business application and its associated
usage semantics. For example, such a metamodel may repre-
sent, e.g., the semantic metamodel 118 of FIG. 1. In the
example of FIG. 4, an application 402 is described by corre-
sponding attributes 404. In the example, as shown, the
attributes 404 may include a globally unique identifier
(GUID) 406, which will uniquely identify an underlying
application used to instantiate the metamodel of FIG. 4. In
other words, a result of instantiating the metamodel of FIG. 4
would be, e.g., the application-specific metamodel instance
106, so that the GUID 406 would assist in relating the result-
ing metamodel instance to the specific application in ques-
tion.

Further within the attributes 404, a company 408 that is
responsible for the application in question may be identified.
Similarly, a uniform resource locator (URL) 410 may be
included, which identifies the responsible company 408
through the use of a URL link, e.g., to the company website or
relevant portion thereof.

Further in FIG. 4, a semantic ID 412 is included, which
generally represents information relating to a description,
purpose, and context of the application 402. More detailed
examples of the semantic ID 412 are provided below, e.g.,
with respect to FIG. 5.

Also in FIG. 4, features 414 refer to a set of requirements
filled by the application 402 and exposed for external use. In
other words, the features 414 corresponds generally to the
application features 202 of FIG. 2A. Similarly, needs 416
refer to a set of requirements that the application 402 desires
or needs to be filled by some other application or service, in
order to provide a corresponding functionality. Thus, the
needs 416 responds generally to the bill of needs 204
described above with respect to FIG. 2A.

FIG. 5 is an expanded version of FIG. 4, in which each of
the semantic 1D 412, features 414, and needs 416 are
expanded to provide a more detailed view of each. Specifi-
cally, as shown, the semantic ID 412 is associated with a
semantic 1D structure 502, in which a unique identifier 504
provides identification for a semantic usage of the semantic
1D 412. Meanwhile, a description 506 provides a human
readable description of the usage semantics, which may be
included in corresponding, generated documentation. Fur-
ther, a purpose 508 is included in the semantic ID structure
and includes a machine-readable declaration of the semantic
usage.

10

15

20

25

30

35

40

45

50

55

60

65

12

As shown, the purpose 508 may include a standard purpose
510, referring to a set of predefined purposes for all compat-
ible business applications. As further shown, with respect to
the standard purposes 510, such purposes may include inte-
gration 512, associated process step 514, associated analytics
516, and/or associated monitoring 518. The purpose 508 also
may include an extended purpose 520, which may refer, for
example, to extensions added by a customer or other con-
sumer or purchaser of a relevant application. Thus, the
extended purpose 520 identifies application-specific purpose
or semantic usages associated with such customizations.

With regard to the features 414, a plurality of associated
requirements 521 may be enumerated, where each require-
ment 522 may include, for example, usage semantics 524, one
ormore process lists 526, data list 528, and service list 530. As
may be appreciated from the above description of FIG. 1,
such lists and related information may correspond with the
semantic mapper 122, the process mapper 124, and the data
mapper 126 of the transformation engine 120 of FIG. 1.

As shown, the usage 524 may relate generally to define
usage semantics for the application 402 and its associated
requirements 521. The process list 526 may refer generally to
a set of processes for the requirement 522. The data list 528
provides a relevant set of data for the defined requirement
522. Finally, similarly, the service list 530 defines the subset
of services for the defined requirement.

As also described above, the needs 416 correspond gener-
ally to the type of bill of needs described above, e.g., the bill
of needs 204 of FIG. 2A. Consequently, in contrast to the
features 414 and the requirements 521 which specify set of
requirements filled by the application 402 and exposed for
external use, the needs 416 and associated requirements 531
provide a set of requirements that the application 402 needs or
desires to be filled by some other application or service, e.g.,
the application 108.

As may be observed, the corresponding requirement struc-
ture 532 may correspond substantially or completely identi-
cal to the requirement structure 522 associated with the
requirement 521 of the features 414. In this way, for example,
it may be a straightforward extension for a provider or user of
the metamodel of FIG. 4 to add the needs 416 to the meta-
model, due to familiarity with the features 414 and associated
data requirements 521/522. Moreover, due to such identity
between the requirements 521/522 and the needs 416, includ-
ing requirements 531 and requirement structure 532, it may
be straightforward to determine integration points at which
the application 402 provides integration points for integration
with a second application, which itself, as described with
respect to FIG. 2A may utilize requirements 206 which are
identical in form and structure to the requirement structures
522, 532.

FIG. 6 is a further expanded view of the metamodel of FI1G.
5, in which additional detail regarding the usage semantics
524/534 are provided. As illustrated, a given instance of such
usage semantics may be associated with its own semantic 1D
602 that identifies a semantic usage thereof, as well as a
direction 604 that identifies a direction of data flow, and
relationships 606 that represent a set of valid relationships
and associations between various semantic entities. Further,
as may be expected from the similarity between the require-
ment 522 and the requirement 532, the usage semantic 534 of
the requirement 532 also may be associated with a semantic
1D 608, direction 610, and relationship 612, which may be
similar or the same in structure and form with respect to the
semantic 1D 602, the direction 604, and the relationship 606.
Moreover, the semantic ID 602/608, although not specifically
illustrated in FIG. 6, may have a structure and format that is

US 9,400,647 B2

13

identical or substantially identical to the semantic 1D 502,
which consequently is not reproduced here in detail.

FIGS. 7, 8, 9, 10 provide further detail with respect to the
usage semantic 524, the process list 526, the data list 528, and
the service list 530, respectively, of the requirement 522. Of
course, in this regard, it may be appreciated that the example
of FIGS. 7-10 will also be applicable to the identical struc-
tures 534, 536, 538, 540 of the requirement 532.

Thus, in the example of FIG. 7, further detail regarding
usage semantics 701 are provided. As already described, the
usage semantics may include the semantic ID 602, which is
shown in expanded form as being identical to the semantic ID
502 of FIG. 5, as referenced above. Meanwhile, the direction
604 is expanded to illustrate an example direction 702, and
which input 704 and output 706 directions are identified for
corresponding data flows.

Further in FIG. 7, a relationship structure 707 illustrates an
example form and format for relationship 708 of the set of
valid relationships and associations 606 described above.
That is, as shown, the relationship 708 may identify related
processes 710 in a corresponding list, which identify the
referenced related processes 712 themselves, along with
semantic ID 714 that associates a current related process
reference to the actual defined process. Again, the semantic
1D 714 may correspond in form and format to the semantic ID
502.

Similarly, a list of related data 716 may reference corre-
sponding related data 718, which is associated by virtue of the
semantic ID 720. Finally in FIG. 7, and similarly, a list of
related services 722 may be associated with a corresponding
related service 724 by semantic ID 726.

With reference back to, e.g., the requirement 522 of FIGS.
5, 6, the process list 526 may be associated with a process 802
of FIG. 8, which, as illustrated, provides a definition and
associated semantics of a particular business process. Spe-
cifically, as shown, usage semantics 804 may be provided,
along with a status list that enumerates various phases in the
process life cycle of the process 802.

Then, corresponding status information 808 may be pro-
vided, utilizing associated usage semantics 810, in conjunc-
tion with a process name 812 and ID 814, as well as a service
definition 816 providing a definition and semantics of related
services. It may be noted that the usage semantics 804 and
810 (as well as 822, described below) may correspond to the
usage data structures described above with respect to FIG. 7,
in the appropriate context illustrated in FIG. 8. Similarly, the
service definition and semantics 816 may correspond to
related data structures described below with respect to FIG.
10 (similar comments apply to the service 828, described
below).

Further in FIG. 8, an action list 818 associated with the
process 802 enumerate the set of available process actions,
shown in FIG. 8 of actions 820. As referenced, each action
820 may be associated with corresponding defined usage
semantics 822, name 824, ID 826 and associated definition/
semantic of related services.

FIG. 9 provides further detail with regard to the data list
528/538 of F1IGS. 5/6. Specifically, as shown, data 902 used or
produced may be associated with corresponding defined
usage semantics 904. A data type 906 may be used to identify
the type of business object represented by particular data. For
example, as shown, the data type 906 may include master data
908, transactional data 910, and/or configuration data 912.

Further, data elements 914 may be used to represent a set of
fields of a business object’s data model. Corresponding data
elements 916 may thus represent an individual field within a
business object. Then, the data element 916, as shown, may be

25

30

35

40

45

50

14

associated with a data element type 918 that identifies
whether a field is a standard field 920 or an extension 922. The
data element 916 may also be associated with a data element
1D 924, a data element name 926, a data element content type
928, and a data element content value 930. Finally with
respect to FIG. 9, the data element may be further associated
with a data collection 932 of child business objects.

FIG. 10, as referenced above, provides further detail with
respect to the service list 530/540 of FIGS. 5/6. As shown, a
service 1002 may be associated with corresponding definition
and semantics. Specifically, as shown, usage semantics 1004
may be included. Further, a technical service type 1006 for
the service 1002 may be specified, such as, e.g., REST 1008,
SOAP 1110 and/or XML 1012.

Further with respect to FIG. 10, a service interface 1014
may be included which identifies a manner in which a related
service 1002 may be connected and consumed. Conse-
quently, the service interface 1014 may specify an end point
URI (uniform resource identifier) 1016 associated with the
service. Further, a service schema URI 1018 may be provided
as a URI pointing a schema that defines input and output
parameters for the service 1002 in question.

FIG. 11 is a diagram of an application-specific metamodel
instance created in conjunction with the application meta-
model described above with respect to FIGS. 4-10. Specifi-
cally, as shown, an application 1102 may provide strategic
sourcing technologies and techniques. As shown, the appli-
cation 1102 may be associated with corresponding attributes
corresponding to the attributes 404 of FIG. 4. Specifically, as
shown, such attributes may include a GUID, a company iden-
tifier, and a corresponding URL. Further, a semantic ID 1104
corresponding to the semantic 1D 412 of FIG. 4 may be
included which itself may include a purpose 1106 corre-
sponding, for example, to the purpose 508 of FIG. 5, which
provides a machine-readable declaration of the semantic
usage of the application in question.

Further, the example of FIG. 11 provides specific instances
of' needs 1108, corresponding to the needs 416 of FIG. 4, as
well as features 1010 corresponding to the features 414 of
FIG. 4. Then, in the specific example, the needs 1108 may
include a first requirement 1112 related to a purchase requi-
sition. As shown, the requirement structure 1113 includes
usage semantics 1114, again corresponding to the related
structures of FIGS. 5, 6. Specifically, as shown, a direction
1116 specifies an input direction, and a semantic ID 1118
provides an ID for a purchase requisition and associated
description. Again, the semantic ID 1118 is linked to a pur-
pose 1120, e.g., a purpose of aggregating demand.

Then, relationships 1122 may specify related processes
1124, such as may be associated with a semantic ID 1126 for
strategic sourcing. Similarly, a related service 1128 may be
associated with a semantic ID for creating a request for pro-
posal (RFP). Further, related data 1132 may be associated
with a semantic ID for 1134 for the RFP itself.

Similar, and supply to a second need/requirement 1135 for
apurchase order, specifically, as shown, the requirement 1136
includes usage semantics 1137, including a direction 1138
specifying an output direction. A semantic ID 1139 again
specifies an ID (i.e., purchase order) and associated descrip-
tion, and is associated with a purpose 1140 of providing a
purchase order.

Relationships 1141 specify arelated process 1142 having a
semantic ID 1143 for an order to be issued. A related service
1144 is associated with a semantic ID 1145 describing cre-
ation of a purchase order (PO). Further, related data 1146 is
associated with a semantic ID for the PO 1147 itself.

US 9,400,647 B2

15

Similar comments apply to the example RFP requirement
1148, and associated data structure 1149. Specifically, as
shown, a usage semantics 1150 specifies a direction 1151 as
an input direction. A semantic ID 1152 provides a corre-
sponding RFP identifier and description, along with a purpose
1153 specifying the purpose of request for a proposal.

Relationships 1154 include a related process 1155 having
a semantic 1156 for contract management, and a semantic ID
1157 for auction management. A related service 1158 is asso-
ciated with a semantic ID 1159 for creation of a contract, as
well as a semantic ID 1160 for creation of an auction. Related
data 1161 is associated with a semantic ID 1162 for the
resulting contract itself while, similarly, a semantic 1163
provides the created/managed auction.

Further, a process 1164 corresponding to the description of
FIG. 8 includes usage semantics 1165 describing a demand-
to-source, a usage net 1166 related to supplier discovery,
usage semantics 1167 relating source-to-award, and usage
semantics 1173 relating award-to-contract. As further shown,
the usage semantics 1167 may include a status 1168 (new), a
status 1169 (bid), and status 1172 (award). As also shown, the
status 1169 may include a specified service 1170 for submit-
ting a bid, as well as a service 1171 for starting a related
auction.

A service 1174 corresponding conceptually to the service
of FIG. 10, includes a structure 1175 that specifies usage
semantics 1176 related to RFP creation, which has a semantic
1D 1177 associated therewith. Then, a service 1178 is speci-
fied as having a service type SOAP, along with a relevant URI
and service schema URI. Then, data 1179, corresponding to
FIG. 9, provides data structure 1180 which specifies usage
semantics 1181 related to an RFP, along with a corresponding
semantic 1D 1182. A data type 1183 specifies an RFx with
element 1184 related to a proposal due date, and element
1185 related to an intent to respond. Then, structure 1186
includes usage semantics 1187 for a vendor, having a seman-
tic ID 1188 shown as “supplier.”” A data type 1189 for the
vendor will be shown as master data, where, in the example,
one element is a DUNS number 1190, and a second element
1191 identifies the vendor as a small business. Finally with
respect to FIG. 9, a relationship 1192 is also illustrated
between the data structures 1180, 1186.

Thus, with respect to the above description of FIGS. 1-10,
the application-specific metamodel instance of FIG. 11 may
be understood to illustrate such an instance for an underlying
sourcing application. In the example, the various features
1110 illustrate that the application in question has the capa-
bilities to provide an RFP. Further, the needs 1108 specify
that, in order to provide the RFP, the application may desire or
require a second application to generate a purchase requisi-
tion 1112 and/or a purchase order 1135.

As described in detail, the application in the example of
FIG. 11 may thus represent, for example, the requisition
application 104 of FIG. 2A, in which the needs 1108 corre-
spond to the bill of needs 204 described with respect thereto,
and the features 1110 correspond to the application features
202. Then, some second application and corresponding appli-
cation-specific metamodel instance, not specifically illus-
trated with respect to F1G. 11, and corresponding to the sourc-
ing application 108 of FIG. 2A, may be discovered within the
repository 115. Thereupon, the application of FIG. 11 may
easily be integrated with one or more such applications in
order to fulfill the needs 1108 in an automatic, cost effective,
and efficient manner.

For the sake of further illustration example, a developed
XML schema for representing one of the semantic metamod-
els 102 of FIG. 1 is provided below. Of course, it may be

10

20

25

30

35

40

45

50

55

60

65

16

appreciated that the provided XML schema is intended
merely for the sake of further illustration example with
respect to a particular implementation of such a semantic
metamodel, in conjunction with the examples provided above
with respect to FIGS. 4-11. Thus, in this regard, the provided
XML schema should not be understood to be limiting of the
types of current and future techniques that may be utilized to
represent the semantic metamodels 102.

Code Portion 1

Implementations of the various techniques described
herein may be implemented in digital electronic circuitry, or
in computer hardware, firmware, software, or in combina-
tions of them. Implementations may implemented as a com-
puter program product, i.e., a computer program tangibly
embodied in an information carrier, e.g., in a machine-read-
able storage device or in a propagated signal, for execution by,
or to control the operation of, data processing apparatus, e.g.,
a programmable processor, a computer, or multiple comput-
ers. A computer program, such as the computer program(s)
described above, can be written in any form of programming
language, including compiled or interpreted languages, and
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer
program can be deployed to be executed on one computer or
on multiple computers at one site or distributed across mul-
tiple sites and interconnected by a communication network.

Method steps may be performed by one or more program-
mable processors executing a computer program to perform
functions by operating on input data and generating output.
Method steps also may be performed by, and an apparatus
may be implemented as, special purpose logic circuitry, e.g.,
an FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. Elements of a computer may
include at least one processor for executing instructions and
one or more memory devices for storing instructions and data.
Generally, a computer also may include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Information carriers
suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The pro-
cessor and the memory may be supplemented by, or incorpo-
rated in special purpose logic circuitry.

To provide for interaction with a user, implementations
may be implemented on a computer having a display device,
e.g., a cathode ray tube (CRT) or liquid crystal display (LCD)
monitor, for displaying information to the user and a key-
board and a pointing device, e.g., a mouse or a trackball, by
which the user can provide input to the computer. Other kinds
of'devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory

US 9,400,647 B2

17

feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input.

Implementations may be implemented in a computing sys-
tem that includes a back-end component, e.g., as a data server,
or that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation, or
any combination of such back-end, middleware, or front-end
components. Components may be interconnected by any
form or medium of digital data communication, e.g., a com-
munication network. Examples of communication networks
include a local area network (LAN) and a wide area network
(WAN), e.g., the Internet.

While certain features of the described implementations
have been illustrated as described herein, many modifica-
tions, substitutions, changes and equivalents will now occur
to those skilled in the art. It is, therefore, to be understood that
the appended claims are intended to cover all such modifica-
tions and changes as fall within the scope of the embodi-
ments.

What is claimed is:

1. A system including instructions recorded on a non-
transitory computer readable storage medium and executable
by at least one processor, the system comprising:

a metamodel selector configured to cause the at least one
processor to determine a semantic metamodel appli-
cable to at least two software applications, the semantic
metamodel including a description of semantics, pro-
cesses, and data that are applicable to the at least two
software applications;

a metadata manager configured to cause the at least one
processor to obtain first application metadata describing
functionality provided by a first software application of
the at least two software applications;

atransformation engine configured to cause the at least one
processor to transform the first application metadata into
a first application-specific metamodel instance of the
semantic metamodel, the transformation including
translating the first application metadata into require-
ments that specify application functionality for the first
software application, and mapping a portion of the
requirements in the first software application to require-
ments in a second software application of the at least two
software applications, the portion selected based on dis-
covering that the first software application is requesting
functionality associated with the second software appli-
cation; and

an integration engine configured to cause the at least one
processor to integrate the at least two software applica-
tions, including the portion, based on the first applica-
tion-specific metamodel instance and the requested
functionality, and based on a second application-specific
metamodel instance of the semantic metamodel
obtained from second application metadata of the sec-
ond software application,

wherein the transformation engine is configured to cause
the at least one processor to transform the first applica-
tion metadata into the first application-specific meta-
model instance of the semantic metamodel indepen-
dently of the second application-specific metamodel
instance.

2. The system of claim 1, wherein the metamodel selector
is further configured to search a metamodel repository storing
a plurality of semantic metamodels to select the semantic
metamodel therefrom.

10

15

20

25

30

35

40

45

50

55

60

65

18

3. The system of claim 2, wherein the metamodel selector
includes a feature selector configured to select portions of the
first application metadata for use in selecting the semantic
metamodel from the plurality of semantic metamodels.

4. The system of claim 1, wherein the metadata manager is
configured to provide the first application metadata based on
an analysis of the first software application.

5. The system of claim 1, wherein the transformation
engine includes:

a semantic mapper configured to perform a mapping of
semantics of the first software application metadata
using the semantics description of the semantic meta-
model and for inclusion within the first application-
specific metamodel;

a process mapper configured to perform a mapping of
processes described in the first application metadata
using the processes description of the semantic meta-
model and for inclusion within the first application-
specific metamodel; and

a data mapper configured to perform a mapping of data
described in the first application metadata using the data
description of the semantic metamodel and for inclusion
within the first application-specific metamodel.

6. The system of claim 1, wherein the semantic metamodel
defines features applicable to the at least two software appli-
cations, and the first application-specific metamodel instance
includes instantiations of a subset of the defined features that
are provided by the first software application.

7. The system of claim 1, wherein the semantic metamodel
defines needs applicable to the at least two software applica-
tions, and the first application-specific metamodel instance
includes instantiations of a subset of the defined needs that are
requested by the application for fulfillment thereof by the
second software application.

8. The system of claim 7, wherein a repository is config-
ured to store a plurality of application-specific metamodel
instances corresponding to a plurality of applications, includ-
ing the at least two applications, and further comprising an
application matcher configured to match needs of the first
software application with features of at least one of the stored
application-specific metamodel instances, for fulfillment
therewith.

9. The system of claim 8, wherein the application matcher
is further configured to perform a search of the stored appli-
cation-specific metamodel instances in the repository that are
instantiated from the semantic metamodel, based on the needs
of the first software application.

10. A computer-implemented method for causing at least
one processor to execute instructions recorded on a computer-
readable storage medium, the method comprising:

determining a semantic metamodel applicable to at least
two software applications, the semantic metamodel
including a description of semantics, processes, and data
that are applicable to the at least two software applica-
tions;

obtaining application metadata describing functionality
provided by a first software application of the at least
two software applications;

transforming the first application metadata into a first
application-specific metamodel instance of the semantic
metamodel, the transformation including translating the
first application metadata into requirements that specify
application functionality for the first software applica-
tion, and mapping a portion of the requirements in the
first software application to requirements in a second
software application of the at least two software appli-
cations, the portion selected based on discovering that

US 9,400,647 B2

19

the first software application is requesting functionality
associated with the second software application; and

integrating the at least two software applications, including
the portion, based on the first application-specific meta-
model instance and the requested functionality, and
based on a second application-specific metamodel
instance of the semantic metamode] obtained from sec-
ond application metadata of the second software appli-
cation,

wherein the transformation engine is configured to cause

the at least one processor to transform the first applica-
tion metadata into the first application-specific meta-
model instance of the semantic metamodel indepen-
dently of the second application-specific metamodel
instance.

11. The method of claim 10, wherein the transforming
further includes:

performing a mapping of semantics of the first software

application metadata using the semantics description of
the semantic metamodel and for inclusion within the
first application-specific metamodel;

performing a mapping of processes described in the first

application metadata using the processes description of
the semantic metamodel and for inclusion within the
first application-specific metamodel; and

performing a mapping of data described in the first appli-

cation metadata using the data description of the seman-
tic metamodel and for inclusion within the first applica-
tion-specific metamodel.

12. The method of claim 10, wherein the semantic meta-
model defines features applicable to the at least two software
applications, and the first application-specific metamodel
instance includes instantiations of a subset of the defined
features that are provided by the first software application.

13. The method of claim 10, wherein the semantic meta-
model defines needs applicable to the at least two software
applications, and the first application-specific metamodel
instance includes instantiations of a subset of the defined
needs that are requested by the application for fulfillment
thereof by the second software application.

14. A computer program product, the computer program
product being tangibly embodied on a non-transitory com-
puter-readable medium and comprising instructions that,
when executed, are configured to cause at least one processor
to:

determining a semantic metamodel applicable to at least

two software applications, the semantic metamodel
including a description of semantics, processes, and data
that are applicable to the at least two software applica-
tions;

obtaining application metadata describing functionality

provided by a first software application of the at least
two software applications;

15

20

30

35

40

45

50

20

transforming the first application metadata into a first
application-specific metamodel instance of the semantic
metamodel, the transformation including translating the
first application metadata into requirements that specify
application functionality for the first software applica-
tion, and mapping a portion of the requirements in the
first software application to requirements in a second
software application of the at least two software appli-
cations, the portion selected based on discovering that
the first software application is requesting functionality
associated with the second software application; and

integrating the at least two software applications, including
the portion, based on the first application-specific meta-
model instance and the requested functionality, and
based on a second application-specific metamodel
instance of the semantic metamode] obtained from sec-
ond application metadata of the second software appli-
cation,

wherein the transformation engine is configured to cause

the at least one processor to transform the first applica-
tion metadata into the first application-specific meta-
model instance of the semantic metamodel indepen-
dently of the second application-specific metamodel
instance.

15. The computer program product of claim 14, wherein
the instructions, when executed, are further configured to:

perform a mapping of semantics of the first application

metadata using the semantics description of the seman-
tic metamodel and for inclusion within the first applica-
tion-specific metamodel;

perform a mapping of processes described in the first appli-

cation metadata using the processes description of the
semantic metamodel and for inclusion within the first
application-specific metamodel; and

perform a mapping of data described in the first application

metadata using the data description of the semantic
metamodel and for inclusion within the first application-
specific metamodel.

16. The computer program product of claim 14, wherein
the semantic metamodel defines features applicable to the at
least two software applications, and the first application-spe-
cific metamodel instance includes instantiations of a subset of
the defined features that are provided by the first software
application.

17. The computer program product of claim 14, wherein a
repository is configured to store a plurality of application-
specific metamodel instances corresponding to a plurality of
applications, including the at least two applications, and fur-
ther comprising an application matcher configured to match
needs of the first software application with features of at least
one of the stored application-specific metamodel instances,
for fulfillment therewith.

#* #* #* #* #*

